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By A. MANELA AND I. FRANKEL
Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

(Received 20 March 2002 and in revised form 2 December 2002)

We calculate the average swimming velocity and dispersion rate characterizing
the transport of swimming gyrotactic micro-organisms suspended in homogeneous
(simple) shear. These are requisite effective phenomenological coefficients for the
macroscale continuum modelling of bioconvection and related collective-dynamics
phenomena. The swimming cells are modelled as rigid axisymmetric dipolar particles
subject to stochastic Brownian rotations. Calculations are effected via application of
the generalized Taylor dispersion scheme. Attention is focused on finite (as opposed to
weak) shear. Results indicate that the largest transverse average swimming velocities
(essential to gyrotactic focusing) appear shortly after transition from the ‘tumbling’
mode of motion to cells swimming in the equilibrium direction. At sufficiently
large shear rates, dispersivity is not monotonically decreasing with external-field
intensity. Exceptional dispersion rates which are unique to non-spherical cells appear
in the ‘intermediate domain’ of external fields. These are rationalized in terms of the
corresponding deterministic problem (i.e. in the absence of diffusion) when cell rotary
motion is governed by the simultaneous coexistence of multiple stable attractors.

1. Introduction
Gyrotactic focusing (Kessler 1985; Pedley & Kessler 1992) through the balance

of gravitational and viscous torques causes bottom-heavy micro-organisms to
deviate from the vertical and swim on average towards domains of downwelling.
Accumulation of the cells which are denser than the suspending fluid enhances local
downward velocity which, in turn, results in further entrainment of cells. Coherent
descending plumes of cells are thereby generated and maintained. Thus, unlike the
overturning instability in suspensions of purely upswimming micro-organisms and the
analogous thermal Rayleigh–Bénard convection, gyrotaxis may lead to spontaneous
bioconvection pattern formation even in the absence of a vertical concentration
gradient (i.e. in an initially homogeneous suspension). These phenomena may be
exploited in a variety of cell-biology-related applications (e.g. rapid concentration of
cells, separation of polydisperse populations according to swimming behaviour, etc.).
Collective dynamics in suspensions of swimming cells are also significant in ecological
and evolutionary issues such as predator–prey balance of species, migration of algal
blooms and active transport (e.g. of oxygen) via enhanced mixing (cf. Kessler 1985;
Pedley & Kessler 1992).

Continuum macroscale modelling of suspensions of swimming micro-organisms
involves (among other things) a conservation equation for n(R, t), the spatial
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distribution of cell number density,

∂n

∂t
+ ∇ · J̄ =0, (1.1)

wherein

J̄ = [V (R) + Ū]n − D̄ · ∇n. (1.2)

In (1.2), V (R) is the ambient flow field, Ū denotes the average swimming velocity
vector of the micro-organisms and D̄ is their effective dispersivity dyadic. The latter
coefficient is of prime importance both in linear stability analyses (Bees & Hill 1998;
Pedley, Hill & Kessler 1988) as well as in simulations of fully developed bioconvection
(Ghorai & Hill 2000).

The first continuum model of suspensions of non-spherical gyrotactic micro-
organisms was presented by Pedley et al. (1988). They assumed a uniform swimming
velocity of the cells in the direction corresponding to the stable equilibrium orientation
(existing for a sufficiently weak ambient flow, Pedley & Kessler 1987) and a constant
isotropic diffusivity. Pedley & Kessler (1990) pointed out that these assumptions
were inconsistent in that the former implied that randomness was weak relative to
the orienting gravitational and viscous torques whereas the latter connoted strong
randomness. Accordingly, in their later continuum model the effective transport
coefficients were obtained via averaging with a probability density function satisfying
an appropriate Fokker–Planck equation in orientation space (cf. § 2). Specifically,
the present expression of Ū , (2.10), is equivalent to their (1.5). The effective cell-
diffusivity tensor was defined by a time integral of the covariance of swimming
velocity. This definition was subsequently simplified by the postulate of an ad hoc
(presumed) constant direction-correlation time which apparently allowed for the
expression of D̄ in terms of the variance of swimming velocity (see (5.1) and (5.2) and
the discussion pertaining thereto). Actual calculation of the orientation distribution
and the corresponding Ū and D̄ was only effected in the limit of (asymptotically)
weak ambient shear. While this could be adequate for studying the very onset of
instability, the authors indicated that, in order to study fully developed bioconvection
and related collective-motion phenomena, it was desirable to calculate the orientation
distribution at substantial ambient shear when the hydrodynamic viscous torque was
comparable or (asymptotically) large relative to the gravitational torque. (It was
further suggested that this would also improve the model of Pedley et al. (1988) by
relaxing the above-mentioned restriction to deterministic rotary motion dominated
by a single stable equilibrium orientation.)

Towards this end Bees, Hill & Pedley (1998) calculated the orientation distribution
making use of a Galerkin method (Strand & Kim 1992) truncated at a low order.
The distribution thus obtained was then applied to the calculation of Ū and D̄ by
use of the expressions put forward by Pedley & Kessler (1990). Following Brenner
& Weissman (1972), this study was supplemented by an asymptotic calculation for a
suspension of spheres at large Péclet numbers under weak gravitational torques.
A fairly comprehensive analysis of the orientation distribution of axisymmetric
particles was presented by Almog & Frankel (1998) in the context of the rheology of
suspensions of dipolar particles. The results in the limit of weak rotary diffusion were
rationalized in terms of the corresponding deterministic motion (Almog & Frankel
1995).

Hill & Bees (2002) have recently indicated that a rigorous calculation of Ū and
D̄ may be accomplished by use of the generalized Taylor dispersion theory (the
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expressions employed for D̄, their (19) or (32), may, however, not be positive definite
at strong shear; see § 5). Towards this end, they have applied the low-order truncated
Galerkin scheme of Bees et al. (1998) to the calculation of the requisite fields (cf. § 2)
for suspensions of spherical cells.

Actual cell-body shapes are often non-spherical (Pedley & Kessler 1992) and
the presence of flagella (cf. Jones, LeBaron & Pedley 1994) renders hydrodynamic
modelling by spheres still less satisfactory. Moreover, stability analyses (Pedley et al.
1988) demonstrate that cell eccentricity significantly affects the resulting dispersion
relations. The present contribution is therefore aimed at the calculation of Ū and
D̄ in sheared suspensions of both spherical and axisymmetric swimming gyrotactic
micro-organisms. It is thereby intended to clarify the respective effects on the transport
process of such factors as the (finite) shear rate as well as the magnitude and direction
of the external field (relative to the ambient shear). Qualitative trends will (as far
as possible) be rationalized by reference to the corresponding deterministic rotary
motion and orientation distribution previously studied by Almog & Frankel (1995,
1998).

In the next section, the initial- and boundary-value problem governing the motion
of a single swimming tracer cell is formulated. Generalized Taylor dispersion theory
is then applied to obtain the effective coefficients characterizing the macroscopic
transport model problem. Explicit results for the average swimming velocity
and dispersion rate are subsequently presented and discussed for spherical and
axisymmetric cells (§ § 3 and 4, respectively). Finally, in § 5 we make some comments
regarding the applicability and significance of the present results, desirable extensions
thereto and the relationship to previous calculations of D̄. Asymptotic calculations of
the requisite fields are outlined in the Appendix.

2. Formulation of the problem
In a dilute monodisperse suspension, we focus on the motion of a single ‘tracer’

micro-organism. This, in turn, is modelled as a rigid Brownian axisymmetric-
centrosymmetric particle† possessing a permanent embedded dipole (aligned with
the axis of symmetry). The instantaneous geometrical configuration of the cell is
thus completely specified by R, its physical-space position vector and its orientation
represented by the unit vector e attached to the dipolar axis (see figure 1). Orientation
space may effectively be represented in the present problem by S2, the unit sphere.

We consider a steady homogeneous shear flow defined by a prescribed constant
and uniform ambient velocity gradient dyadic G (see § 5). The present transport
problem is thereby decoupled from the dynamic problem. No a priori restrictions are
imposed on the magnitude of shear rate (represented by G, an appropriate norm of
G). According to Pedley & Kessler (1990), this is a prerequisite for the discussion of
transport phenomena in fully developed bioconvection.

The requisite statistical description of the motion is embodied in P (R, e, t |R′, e′),
the conditional probability density of finding the ‘tracer’ micro-organism at (R, e) at
t > 0 given that it was introduced at t = 0 at the phase-space position (R′, e′). This
density function satisfies the continuity equation

∂P

∂t
+ ∇R · J + ∇e · j = 0, (2.1)

† The results of Jones et al. (1994) indicate that this model qualitatively applies to bi-flagellated
micro-organisms as well.
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Figure 1. Definition of orientation e ≡ (θ, φ) of an axisymmetric cell suspended in simple

shear flow and subject to an external field acting in the direction F̂ ≡ (θf , φf ).

to be supplemented by appropriate constitutive equations for the physical- and
orientation-space flux-density vectors. The former is

J = [V (R′) + (R − R′) · G+ U e]P, (2.2)

wherein V (R′) denotes the undisturbed fluid velocity at R′. The sum of the first two
terms in the square brackets thus represents the contribution of passive convection at
the ambient fluid velocity. The last term corresponds to swimming at the instantaneous
direction e and presumed uniform speed U . Typically, the settling speed is much
smaller than U . The contribution to J of micro-organism sedimentation is therefore
neglected relative to that of swimming.

Stochastic changes of swimming direction result from the locomotory motions of
the micro-organisms. These changes may either occur as finite discrete velocity jumps
or evolve through the accumulation of small gradual rotations which, on the time
scale of observation, appear as a continuous change (Othmer, Dunbar & Alt 1988;
Dickinson 2000). The former process models the run-and-tumble motion of some
chemotactic bacteria. The corresponding stochastic changes of swimming direction
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are represented by an integral turning operator, thereby leading to a Boltzmann-like
equation for the probability density distribution (Alt 1980; Bearon & Pedley 2000;
Hillen & Othmer 2000). In marked contrast to this, the cell-tracking results presented
by Hill & Häder (1997) and Vladimirov et al. (2000) indicate that gyrotactic cells
in a quiescent fluid change their swimming direction in a gradual and continuous
manner. This observation, together with the analysis of Hill & Häder (1997), supports
the model advanced by Pedley & Kessler (1990). The stochastic elements in the
motion of these cells are described as Brownian rotations characterized by a constant
effective (transverse) rotary diffusion coefficient dr (independent of the instantaneous
cell orientation). This coefficient is much larger than the corresponding thermal
molecular coefficient. (Thus, Pedley & Kessler (1992) mention dr ≈ 6.7 × 10−2 s−1 as
an effective value for the alga Chlamydomonas nivalis whereas application of the
Stokes–Einstein relation yields dr ≈ 1.2 × 10−3 s−1 for a geometrically similar rigid
spheroid.) Following this model, the orientation-space flux density is the sum of
convection and diffusion terms

j =GėP − dr∇eP. (2.3)

In (2.3),

ė = e · Λ̂ + B(I − ee)e: Ŝ + λ(I − ee) · F̂, (2.4)

wherein Ŝ and Λ̂, respectively, denote the symmetric and anti-symmetric portions
of the dimensionless ambient-velocity gradient Ĝ= G/G and I is the unit isotropic
second-order tensor. The scalar B (α0 in the notation of Pedley & Kessler 1987)
is the intrinsic rotational shear-diffusion coefficient determined by the eccentricity
of the axisymmetric particle. Thus, for spheroids, B = (R2 − 1)/(R2 + 1) where R is
the ratio of polar and equatorial radii (cf. Brenner 1972). The convective portion
of orientation space flux thus consists of rotation at the undisturbed fluid angular
velocity, the contribution of fluid strain rate to the rotation of the non-spherical cell
and the rotary motion resulting from a uniform external field acting in the direction
of the unit vector F̂ . In the latter, appears the parameter

λ=
mrFr

G
,

in which mr denotes the hydrodynamic mobility corresponding to particle rotation
about a transverse axis; r and F are the respective magnitudes of the dipole moment
and external field. As such, λ expresses the relative effects on particle rotation of
the external field and fluid shear, respectively. For a spherical cell under gravity, we
obtain λ= ρcgr/6 µG wherein ρc denotes the cell density, µ is the carrier-fluid (water)
viscosity and g is the acceleration due to gravity. Pedley et al. (1988) give r ≈ 10−5 cm as
an approximate value of the centre-of-gravity offset for C. nivalis. Typical convection
velocities and length scales in steady bioconvection patterns (Bees & Hill 1997; Bees
et al. 1998; Pedley et al. 1988) yield G ≈ 1 s−1 as a representative shear rate in fully
developed bioconvection. Combining these data, we estimate λ� 0.15 for C. nivalis.

The foregoing continuity and constitutive equations are supplemented by the far-
field attenuation condition

|R − R′|mP → 0 as |R − R′| → ∞, m =0, 1, 2, . . . , (2.5)

the requirements of continuity and single-valuedness in S2 and the initial condition

P = δ(R − R′)δ(e − e′) at t = 0, (2.6)
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wherein δ denotes the Dirac distribution. The foregoing problem uniquely determines
P > 0 (which may serve as the appropriate Green’s function for an arbitrary initial
distribution replacing the ‘instantaneous source’ (2.6)).

Actual calculation of P is a formidable task requiring the solution of the
above initial- and boundary-value problem formulated within the five-dimensional
phase space. However, we are generally not interested in the exhaustively detailed
information embodied in the exact solution, but rather only in its orientation average

P̄ (R, t |R′, e′) =

∫
S2

P (R, e, t |R′, e′) d2e, (2.7)

describing particle transport within physical space irrespective of its instantaneous
orientation. Making use of the generalized Taylor dispersion theory (GTDT), a long-
time (t � d−1

r ) asymptotic description of P̄ may be obtained without the a priori
calculation of the exact P itself (see Brenner 1980, 1982; Frankel & Brenner 1989,
1991, 1993). Within the framework of this formalism, the requisite P̄ is the solution
of a physical-space convection–diffusion model problem consisting of the continuity
equation

∂P̄

∂t
+ ∇R · J̄ = 0, (2.8)

and the constitutive equation

J̄ = [V (R′) + (R − R′) · G+ Ū]P̄ − D̄ · ∇RP̄ , (2.9)

together with the appropriate counterparts of the attenuation (2.5) and initial (2.6)
conditions.

Similarly to (1.2), the model constitutive equation (2.9) is characterized by the pair
of effective phenomenological coefficients, Ū and D̄. According to the GTDT, these
coefficients are obtained via the S2 quadratures

Ū =U

∫
S2

P ∞
0 (e)e d2e = U ē (2.10)

(cf. Pedley & Kessler 1990) for the average swimming velocity and

D̄ =
U 2

dr

[∫
S2

P ∞
0 (e)�B(e) e� s d2e + Pe

∫
S2

P ∞
0 (e)�B(e)B(e) d2e · Ĝ� s

]
, (2.11)

wherein � · � s denotes the symmetric part of the tensor, for the Taylor dispersivity
dyadic. The latter coefficient may alternatively be written

D̄ =
U 2

dr

∫
S2

P ∞
0 (e)(∇e B(e))† · ∇e B(e) d2e (2.12)

( )† denoting the transposed tensor, which (for P ∞
0 > 0) clearly demonstrates that it

is positive-definite. Appearing in (2.11) is the rotary Péclet number

Pe= G/dr

expressing the relative effects of shear and rotary diffusion. (From the above-
mentioned values of dr and G, we obtain Pe ≈ 15 in fully developed bioconvection.)
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The scalar P ∞
0 (e) and vector B(e) orientation-specific fields† appearing in (2.10)–

(2.12) satisfy the pair of time-independent orientation-space convection–diffusion
problems

∇e · (Pe ė P ∞
0 − ∇eP

∞
0 ) = 0, (2.13)

and ∫
S2

P ∞
0 d2e = 1; (2.14)

∇e · [Pe ė(P ∞
0 B) − ∇e(P

∞
0 B)] − Pe(P ∞

0 B) · Ĝ= P ∞
0 (e − ē), (2.15)

and ∫
S2

P ∞
0 B d2e =0, (2.16)

respectively.
In the present problem, Taylor dispersion represents the coupling between the rotary

diffusive sampling of orientation-space and orientation dependence of swimming
velocity. For typical values of swimming speeds ≈ 102 µm/s−1 and cell diameters
≈ 10 µm (Pedley et al. 1988), together with the above-mentioned dr and subsequent
results for the eigenvalue of D̄ (cf. figures 4 and 7) we estimate |D̄| � 10−4 cm2 s−1. This
is ≈ 106 times larger than the translational molecular diffusion coefficient obtained
from the Stokes–Einstein relation. Translational Brownian diffusion is thus negligible
and therefore no counterpart of the effective dispersion term in (2.9) or (1.2) appears
in the purely convective physical-space flux (2.2) of the original problem.

We have focused in the following on the simple shear flow

V = î2Gx, (2.17)

wherein (î1, î2, î3) is a right-handed triad of orthonormal space-fixed unit vectors in
the directions of the (x, y, z) axes. Parameterizing e = (θ, φ) and F̂ = (θf , φf ) in terms
of the spherical polar and azimuthal angles, the orientation-space gradient operator
is

∇e ≡ ∂

∂e
= î θ

∂

∂θ
+ îφ

1

sin θ

∂

∂φ
, (2.18)

in which (e, î θ , îφ) is a right-handed triad of particle-fixed unit vectors (figure 1) and

ė = î θ θ̇ + îφφ̇ sin θ . Making use of these in (2.4), (2.13) and (2.15) we obtain for P ∞
0

and bi(i = 1, 2, 3), the scalar components of P ∞
0 B,

LP ∞
0 = 0,

∫ π

0

∫ 2π

0

P ∞
0 sin θ dφ dθ = 1, (2.19a, b)

Lbi − Pe b1δi2 = P ∞
0 (ei − ēi),

∫ π

0

∫ 2π

0

bi sin θ dφ dθ = 0, (2.20a, b)

† From the definitions of P ∞
0 and B in terms of long-time limits of expressions involving the

statistical moments of P , we can attribute to these fields the following kinematic significance: P ∞
0

is the steady orientation distribution; B represents the long-time limit of the displacement of the
centroid of the sub-population of micro-organisms instantaneously swimming in the direction e
relative to the physical-space position of the centroid of the entire population (cf. Frankel & Brenner
1991).
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wherein δij is the Kronecker delta, L denotes the differential operator

Lf =Pe

[
1

sin θ

∂

∂θ
(θ̇ sin θf ) +

∂

∂φ
(φ̇f )

]
−

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
f

)
+

1

sin2 θ

∂2

∂φ2
f

]
, (2.21)

θ̇ = 1
4
B sin 2θ sin 2φ + λ[sin θf cos θ cos(φ − φf) − cos θf sin θ] (2.22a)

and

φ̇ = 1
2
(1 + B cos 2φ) − λ

sin θf

sin θ
sin(φ − φf). (2.22b)

The symmetry properties of (2.22a, b) allow us to restrict, without loss of generality,
the variation of F̂ and B to the intervals 0 � θf � π/2, 0 � φf � π and 0 � B � 1.

Numerical computation of P ∞
0 and b is effected via application of Galerkin’s

method similarly to Strand & Kim (1992) (see also Frankel & Brenner 1993; Hill &
Bees 2002). Towards this end, the requisite fields are expanded in respective series of
surface harmonics

f = A0 +

∞∑
n=1

n∑
m=0

(
Am

n cos mφ + Bm
n sin mφ

)
P m

n (cos θ).

From the normalization conditions (2.19b) and (2.20b), we readily obtain A0 = 1/4π
for f = P ∞

0 and A0 = 0 for f = bi (i = 1, 2, 3). Furthermore, truncation of the series
beyond some degree n= N , substitution into (2.19a) and use of recurrence relation
and orthogonality properties of the associated Legendre functions P m

n yield a system
of N (N + 2) linear algebraic equations for the coefficients Am

n , Bm
n in the expansion of

P ∞
0 †. Once these are obtained, the forcing terms on the right-hand side of (2.20a) are

calculated. The resulting algebraic systems for bi are then recursively solved (initially
for b1 and b3 (independently of each other) and subsequently for b2 (dependent
upon b1)). The average swimming velocity Ū and the first term in the expression
(2.11) of D̄ only depend upon the first-degree coefficients in the expansions of P ∞

0

and b, respectively. Evaluation of the second term on the right-hand side of (2.11)
requires a numerical quadrature. The numerical scheme allows for the solution of the
problems (2.19)–(2.22) for essentially arbitrary values of λ and Pe. Convergence of
the various series becomes slower with increasing λ, B and, to a lesser extent, Pe.
(Satisfactory accuracy has been verified for truncation at N � 30 when λ� 1, B � 0.8
and Pe � 40.) In view of the above estimate of Pe and the general motivation stated
at the conclusion of § 1, emphasis in discussion of subsequent results is placed on
cases of strong shear.

Finally, the above problem formulation and numerical scheme are appropriate to
the study of arbitrary external field orientations. However, previous studies of the
rotary motion of dipolar particles (Hall & Busenberg 1969; Almog & Frankel 1995)
and their orientation distribution (Almog & Frankel 1998) indicate that the case of an
external field acting in the plane of shear, θf = π/2, is potentially the most interesting
in the present transport problem as well. Subsequent analysis therefore focuses on this
case which also accords with the prospective application to bioconvection problems
where ambient fluid velocities are essentially vertical.

† Explicit forms of the pertinent equations described as well as other details of the computation
are available upon request directly from the authors or the Journal of Fluid Mechanics Editorial
office, Cambridge.
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Figure 2. Effect of the Péclet number on the variation with λ of the average swimming
velocity of spheres. , Ū/U at indicated Pe, · , locus of λ= 1/2.

3. Transport of spherical micro-organisms
In the case of spheres B =0 in (2.4) and (2.22a, b). The ambient strain rate does

not affect ė which is determined by the interplay of undisturbed fluid vorticity
and external field. Furthermore, for an external field acting in the plane of shear,
ė depends only upon the relative azimuthal direction φ − φf . (The same is true
of P ∞

0 as well, cf. Bees et al. 1998.) The deterministic rotary motion e(t) (i.e. in
the absence of diffusion) is governed by (2.4) (or, equivalently, (2.22)) viewed as a
dynamical system. For future reference, we outline here the modes of the rotary
motion (Hall & Busenberg 1969; Brenner 1970). The type, number and location
on S2 of the critical points is exclusively determined by the value of the field
parameter λ. Thus, when λ < 1/2 a pair of centres exist. The resulting rotary motion
is accordingly periodic (the so-called ‘tumbling’, Kessler 1985) during which the
vector e traverses on S2 one of a family of closed orbits encircling either of the
centres (Hinch & Leal 1972). For λ� 1/2, a single stable node occurs on the ‘equator’
(θ = π/2). In the long-time limit, particles assume the corresponding stable equilibrium
orientation.

3.1. Ū , the average swimming velocity

The steady orientation distribution has been analysed by Brenner & Weissman (1972)
and Hinch & Leal (1972) in the context of the rheology of dilute suspensions of
dipolar spheres. By symmetry, when θf = π/2, ē lies in the plane of shear. Figure 2
presents the effect of the Péclet number on the variation with λ of Ū/U = ē. The
variation is explicitly presented by the solid lines for Pe =15 and 100 as well as the
respective limits Pe → 0 (with λPe fixed) and Pe → ∞. The arrows indicate the sense
of increasing λ along the various lines and the dash-dotted curve marks the locus
of ē at λ= 1/2. Since, as mentioned above, P ∞

0 depends only upon φ − φf , pictures
corresponding to different azimuthal directions of the external field may be obtained
through appropriate rigid-body rotations of figure 2. In the absence of an external
field, λ=0, spherical particle orientations are uniformly distributed. All curves thus
originate from ē =0. All curves likewise converge to ē = F̂ as λ→ ∞ when all particles
align with the external field. (Actual computation for Pe =15 and 100 has been
terminated at λ=1 and 0.7, respectively.) Between these limits, |ē| is monotonically
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growing with the orientation distribution becoming increasingly concentrated with λ.
In the absence of shear, Pe =0, orientations are symmetrically distributed about F̂,
hence ē‖F̂. In the other limit, Pe → ∞, the orientation distribution is closely related
to the above-outlined deterministic rotary motion. Thus, when λ < 1/2 the particle
orbits on S2 and the orientation distribution along each of them are both symmetric
relative to the meridional plane perpendicular to F̂ (Hinch & Leal 1972), hence ē ⊥ F̂
within the plane of shear. With growing λ, the orientation distribution (A 8) becomes
increasingly biased toward ē and therefore |ē| → 1 as λ→ 1/2. With further increase of
λ > 1/2, ē coincides with the direction of the stable node of the deterministic motion.
It thus shifts in the clockwise direction along the equator gradually approaching F̂
as λ→ ∞. At all finite Pe, the variation of ē is intermediate between the above pair
of limits.

In view of the mechanism of gyrotactic focusing in vertical shear flows mentioned
at the outset, it seems worth noting the variation with λ of the transverse component
of Ū perpendicular to F̂. In accordance with the foregoing description of the trends
of variation of ē, we see that at a given Pe(�= 0), |ē × F̂| is initially increasing and
subsequently decreasing with λ. At large Pe, the maximum takes place at λ� 1/2
(marked by the dash-dotted line), i.e. shortly after switching between the above-
mentioned modes of deterministic rotary motion.

3.2. D̄, the Taylor dispersivity

The dispersivity dyadic D̄ is represented by its eigenvalues and principal directions. In
the absence of both shear and external fields, D̄ is isotropic (dispersion only resulting
from swimming) and its three eigenvalues are νi = 1/6 (i = 1, 2, 3). By symmetry, when
the external field acts in the plane of shear (θf = π/2) and for arbitrary values of
Pe and λ, a pair of mutually perpendicular principal directions lie in this plane (and
the third is perpendicular thereto). We here focus on ν, the larger of the pair of
corresponding eigenvalues (which is often the largest as well).

The above-mentioned rigid-rotation-type dependence of ē upon φf introduces the
latter into the respective forcing terms of the bi equations (i = 1, 2 in (2.20)). It is
straightforward to establish that these components of b may be represented by the
superposition

bi(θ, φ; φf ) = cos φf bi(θ, φ; φf = 0) + sin φf bi (θ, φ; φf = π/2). (3.1)

Consequently, D̄ depends upon sin φf , cos φf and their products. Numerical results
indicate, however, no significant qualitative difference in D̄ at various values of φf . We
have focused in the following on φf = π/2 in which case the asymptotic calculations
(Appendix) predict the largest dispersion rates for spheres.

The asymptotic calculation in the Appendix yields, in the limit λ � 1 and Pe ∼ O(1)

ν ∼ 8

3

5Pe2 + 4Pe(Pe2 + 4)1/2 + 16

(Pe2 + 16)2
+ O(λ2), (3.2)

together with the corresponding principal direction

û ∼
[
Pe+ (Pe2 + 4)1/2

2(Pe2 + 4)1/2

]1/2[
2

Pe+ (Pe2 + 4)1/2
, 1, 0

]
+ O(λ2). (3.3)

In the absence of an external field, λ=0, these results are exact for all Pe. Initially,
ν increases with Pe from ν = 1/6 at Pe =0 to the maximal value ν ≈ 0.448 at
Pe ≈ 3.31. With further increasing Pe, ν monotonically attenuates. At Pe =0+, the
corresponding eigenvector û lies along the principal direction of extension in the



Generalized Taylor dispersion in suspensions of swimming micro-organisms 109

20 40 60 80

0

0.225

0.4
0.1

0.2

0.3

0.4

Pe

�

Figure 3. Effect of λ on the variation of ν with Pe for spherical cells subject to external field
acting in the azimuthal direction φf = π/2.

ambient flow which suggests that the increased dispersion in the limit of weak
shear is generated by the superposition of passive convection on the isotropic
swimming (cf. (4.1), (4.2) et seq.). Subsequently, with further increasing Pe, û gradually
approaches the direction of undisturbed fluid velocity indicating that dispersion in
the y-direction becomes prominent. This change in û essentially results from the
growth of the contribution through b · Ĝ (in (2.15) or (2.20a)) of b1, the x-component
of b, to b2, the corresponding y-component (see the discussion accompanying (A 5)–
(A 7)). Considering the kinematic significance of the vector B-field (see the footnote
pertaining to (2.15)–(2.16)) we conclude that with increasing shear rate, intense y-
dispersion originates from the relative cell displacements in the x-direction coupled
with the shear field (2.17).

Figure 3 presents the effects of λ on the variation of ν with Pe, the dashed line
corresponding to (3.2) at λ= 0. Initially, differences are small. All curves start at
ν = 1/6 ascending to their respective maxima. These maxima decrease with λ while
slightly shifting to smaller Pe. Subsequently, for Pe � 10 the descent of ν becomes
more gradual with increasing λ. At still larger Pe and λ �= 0, a minimum appears and
ν starts rising again which is most noticeable at λ= 0.225. The variation of ν with λ
thus becomes non-monotonic.

To clarify these trends, figure 4 presents the variation of ν with λ at the indicated
values of Pe (thus, along each of these curves, increasing λ corresponds to increasing
magnitude of external field). In figure 4(a), we initially recognize trends similar to
those mentioned in figure 3. From Pe =0 (the dashed line at ν = 1/6) and up to
Pe ≈ 3, ν is monotonically increasing with Pe and monotonically decreasing with λ.
With further increase in Pe, ν starts diminishing and, at Pe � 13, maxima appear
at λ≈ 0.4 − 0.5. From the behaviour observed in figure 3, we anticipate a renewed
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Figure 4. Effect of Pe on the variation of ν with λ for spheres subject to external field acting
in the direction φf = π/2. (a) Moderate, (b) large values of Pe.

growth of ν at still larger values of Pe. Indeed, as depicted by the dash-dotted curve,
ν is eventually growing and a maximum is apparent at λ≈ 0.225. An asymptotic
calculation in the limit Pe � 1 and λ� 1/2 (see Appendix) yields

ν/Pe2 ∼ ν∞(λ) sin2 φf + O(Pe−1), û ∼ (0, 1, 0). (3.4a, b)

Figure 4(b) accordingly presents the variation of ν/Pe2 with λ at Pe � 1. The solid
lines are obtained by numerical computation at the indicated values of Pe. The dashed
curve is the asymptote ν∞(λ) (3.4a). At Pe =60, a secondary maximum becomes visible
at λ≈ 0.28. With increasing Pe, the original maxima gradually disappear and the solid
curves approach the asymptote. We further elaborate on the non-monotonic variation
of ν with λ in the context of the dispersion of non-spherical cells.
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4. Transport of axisymmetric cells
We here consider the effects of departures from the spherical shape on the

average swimming velocity and dispersion rate of swimming micro-organisms.
The deterministic rotary motion of axisymmetric dipolar particles may be both
qualitatively and quantitatively different from the corresponding motion of dipolar
spheres briefly described at the beginning of the preceding section. Thus (cf. Almog
& Frankel 1995), for relatively weak external fields (i.e. small λ) acting in the plane
of shear, particles either approach a stable limit cycle or stable focal points according
to whether φf is smaller or larger than π/2. Under the action of sufficiently strong
external fields, particles converge to a single stable equilibrium orientation on the
equator of S2 (i.e. on the unit circle θ = π/2). Between these ‘small’ and ‘large’ values
of λ, there may exist an intermediate domain whose extent depends on both φf

and the intrinsic shape parameter B . In this domain, multiple stable attractors may
simultaneously coexist or else orientation space may be divided into separate domains
wherein different modes of rotary motion occur. These differences in the deterministic
rotary motion show up in the following description of the effective phenomenological
transport coefficients.

4.1. Ū , the average swimming velocity

Figure 5 presents the effect of φf , the azimuthal direction of external field on the
variation of Ū/U = ē with λ. The solid curves describe the variation of ē in the plane
of shear at Pe =0+, 15 and 100 and the arrows indicate the sense of increasing λ.
The open circles denote the projections on the plane of shear of the stable nodes of
the corresponding deterministic rotary motion together with the relevant values of λ.
The corresponding locations of ē are marked by asterisks on the respective curves
pertaining to Pe =100. In general, with the exception of φf = 95◦ (which occurs within
the above-mentioned intermediate domain, cf. the discussion of figure 10), two nodes
are presented for each φf , respectively corresponding to the smallest value of λ when
a stable node initially appears and the (largest) value of λ where the curve pertaining
to Pe =100 terminates (all the curves of Pe =15 terminate at λ=1).

Similarly to the case of spheres (cf. figure 2), all curves start at λ= 0 from the
origin (while here the orientation distribution is non-uniform even in the absence of
an external field, it still possesses three mutually perpendicular planes of symmetry
which ensures the vanishing of ē). All curves likewise converge at large λ to ē = F̂.
In the absence of shear, Pe =0, ē‖F̂. The figures corresponding to the various
values of φf exhibit both qualitative and quantitative differences and unlike the
case of spheres cannot be obtained from each other via appropriate ‘rigid-body’
rotations.

Focusing on the curves pertaining to Pe =100, we initially observe only relatively
minor changes of the azimuthal direction of ē with λ increasing from λ=0 at the
origin nearly up to the points marked by the asterisks. Subsequently, following the
first appearance of a stable node, ē veers off rapidly approaching the direction of
F̂. Similarly to spheres, the largest values of the component of Ū perpendicular
to F̂ (which is essential in gyrotactic focusing) occur at λ slightly larger than
those corresponding to the first appearance of stable equilibrium orientations. With
the exception of φf = 95◦ these, however, take place at λ considerably smaller
than 1/2.

Figure 6 presents the variation of |U |/U , the (dimensionless) average swimming
speed, with λ at Pe =15 (figure 6a) and 100 (figure 6b). At both values of Pe, the
average swimming speed at φf = 95◦ is significally smaller than at all other values
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Figure 5. Variation with λ of dimensionless average swimming velocity of axisymmetric cells
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Figure 6. Variation of |ē| with λ for axisymmetric cells (B = 0.8) at indicated values of φf

and (a) Pe= 15 and (b) 100.
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of φf presented. Furthermore, at Pe =100 the ascent of |U |/U is non-monotonic for
λ� 0.7. Referring back to figure 5(c), we note that for 0.71 � λ� 0.9, a pair of stable
nodes simultaneously coexist. This has a profound effect on the resulting orientation
distribution and hence on the average swimming speed (as well as the effective rate of
dispersion, see figure 9 and the discussion pertaining thereto.) (Also in this context,
Pedley & Kessler (1987, 1992) speculate on potential implications of the existence of
a pair of stable equilibria in pure straining flows.)

4.2. D̄, the Taylor dispersivity

Similarly to the dispersion of spheres, we here focus also on the eigenvalue ν and
the corresponding eigenvector û characterizing D̄. Brenner & Condiff (1972, 1974)
studied the orientation distribution of dipolar axisymmetric particles suspended in a
general weak homogeneous shear flow and subject to a weak external field. Making
use of Pn(e), the polyadic surface harmonics (Brenner 1964), they obtained P ∞

0 (e) in
invariant form. Following their scheme, b(e) is expanded in powers of Pe and λPe.
For the simple homogeneous shear (2.17), we obtain, in the limit Pe∼ o(1) and a fixed
λ ∼ O(1),

ν ∼ 1
6
+ 1

24
(2 + B)Pe + 1

6

{
3
16

+ 1
5
B − 59

1680
B2 − 1

180

[
83 + 29

12
(2 + B) sin 2φf

]
λ2

}
Pe2 (4.1)

together with the eigenvector

û ∼
[
1, 1 +

1

15(2 + B)

(
30 + 29B

2
+

29λ2

6

(
−cos 2φf + 1

12
(10 − B) sin 2φf

))
Pe

+
29λ2(30 + 29B)

2700(2 + B)2
sin 2φf Pe2, 0

]
. (4.2)

The leading-order effect is a (linear) increase of ν with Pe. Within the same order,
the corresponding eigenvector lies along the principal direction of extension in the
ambient simple shear. The corresponding invariant expression for an arbitrary (weak)
homogeneous shear is

D̄ ∼ 1
6

[
I+ Pe

(
1 + 1

2
B

)
Ŝ + O(Pe2)

]
. (4.3)

This expression indicates (cf. (3.3) et seq.) that increased dispersion in the present
limit originates from the superposition of the passive distortion of the suspension by
the ambient strain and the essentially isotropic swimming of the cells. At a given Pe,
ν is decreasing with λ.

The variation of ν with λ at finite values of Pe is depicted by the solid lines in
figure 7 for B = 0.8 and φf = 60◦. The dashed line at ν =1/6 corresponds to the
isotropic case at Pe =0. We first observe that the above-mentioned trends (namely
the growth of ν with Pe at a given value of λ and its diminution with increasing λ at
a constant Pe) persist nearly up to Pe ≈ 7. At the same time, with increasing Pe, the
corresponding eigenvector û (which is not presented here) moves counterclockwise,
gradually approaching the direction of fluid velocity. This suggests a change in the
kinematics of dispersion, similar to that discussed in § 3 (cf. (3.3) et seq.).

At still larger values of Pe � 7, qualitatively different modes of variation of ν

appear. To begin with we observe that ν is now decreasing with Pe. Occurrence of a
maximum at intermediate values of Pe and subsequent descent of ν has been observed
for spheres (cf. figure 4). Unlike spheres, however, no comparable renewed growth of
ν takes place at large Pe numbers and λ sufficiently small (< 1/2). This difference
originates from the orientation distribution of axisymmetric particles at large Pe and
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Figure 7. Variation of ν with λ for axisymmetric cells (B = 0.8) subject to an external field
acting in the azimuthal direction φf = π/3 at the indicated values of Pe.

arbitrarily small λ becoming increasingly concentrated in a boundary layer about the
stable attractor (e.g. a limit cycle) of the corresponding deterministic problem (Almog
& Frankel 1998).

Less intuitive is the appearance of respective maxima in the variation with λ.
Apparently we anticipate that, with growing intensity of external field, P ∞

0 becomes
increasingly concentrated about the average orientation (which, in turn, approaches
F̂, see figure 5). This is expected to result in the diminishing of the forcing term of
the B-field equation (2.15) and consequently of B and D̄ as well. While for very large
values of λ, ν indeed eventually vanishes (approximately as (λPe)−2, Manela 2002),
for Pe sufficiently large this process is non-monotonic.

Some insight into this behaviour is gained by considering the fields P ∞
0 , B2 (the

component of B in the direction of ambient fluid velocity) and the product P ∞
0 (∇eB2)

2.
Numerical evidence indicates that this product forms the main contribution to ν

within the present range of parameter values. To simplify the description, figure 8
presents only the variation of these fields with the azimuthal direction φ for particle
orientations within the plane of shear (θ = π/2), i.e. along the equator of the unit
sphere.

Figure 8(a) presents the corresponding sections of P ∞
0 . At λ= 0, this distribution

consists of two identical peaks π apart from each other (the entire distribution being
invariant under π-translation in φ, cf. Almog & Frankel 1998). With increasing
intensity of external field, it, on the average, transfers particles from the vicinity of
the right-hand peak to that of the left-hand one (being closer to φf , cf. the discussion
of figure 5). This enhancement of the left-hand peak is accompanied by only a slight
shift towards φf .

Figure 8(b) depicts the effect of λ on B2. Two maxima of ∂B2/∂φ are discernible.
With increasing λ, the relatively milder slope on the right-hand side changes only
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indicated values of λ for axisymmetric cells (B = 0.8); Pe= 20, φf = π/3.

slightly in magnitude and remains nearly in phase with the right-hand peak of P ∞
0 .

The sharper left-hand slope is ever steepening with increasing λ. At the same time,
this peak is shifting to smaller φ, thus becoming out of phase with the corresponding
peak of P ∞

0 .
These trends are compounded in figure 8(c). The smaller contribution of the right-

hand peak is monotonically decreasing with λ as a result of P ∞
0 diminishing in this
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φ interval. The main contribution to the dispersivity comes from the left-hand peak.
Here, the steepening of the B2-gradients and their continual shifting to the left give
rise to opposing effects. Initially, when λ grows from 0.1 to 0.3, the former effect
prevails, leading to a substantial increase in dispersion. Subsequently, with further
increase of λ from 0.3 to 0.5, the gradients of B2 become even steeper. However, very
few particles are present in the relevant domain of orientation space. Dispersion is
therefore rapidly diminishing, despite continued intensification of the B2-gradients.
It is only at still larger values of λ that these very gradients start to diminish and
eventually vanish. Thus, contrary to earlier presumption, it is the lack of coherence
between ∇e B and the orientation distribution (rather than decreasing ∇e B) which
brings about the diminution of dispersion.

We now turn to consider the effect on dispersion of φf , the azimuthal direction
of the external field in the plane of shear. Towards this end, figure 9 presents
the variation of ν with λ for B = 0.8 at the three indicated values of Pe and
six values of φf . Figures 9(a) and 9(f ) are qualitatively similar to the previously
presented figure 9(b) (φf = 60◦, cf. figure 7). In fact, quantitative differences are,
too, relatively minor. A number of qualitative and quantitative differences are
conspicuous at φf = 95◦, particularly at the larger Péclet numbers presented (figures
9(c) and 9(e) qualitatively depict the transitions between figure 9(d) and the former
group).

At φf =95◦, we observe the sharp maxima whose values increase with Pe. These
values are an order of magnitude larger than the corresponding maxima appearing
at φf = 0◦, 60◦ and 135◦. Furthermore, the present maxima at φf = 95◦ occur at
λ≈ 0.8, at which value the corresponding values of ν have already become negligible
in figures 9(a), 9(b) and 9(f ). No counterpart of this unique behaviour exists in
the dispersion of spheres discussed in the preceding section. This behaviour is
enhanced with increasing eccentricity of cell shape. For the present B =0.8, it is
observed for external field directions ranging from φf nearly 90◦ through about
120◦.

To clarify the foregoing observations, we present in figure 10 ‘equatorial sections’
of P ∞

0 , B2 and the product of P ∞
0 by (∂B2/∂φ)2 at the indicated Péclet numbers and

φf = 95◦, λ=0.8 (which is in the vicinity of the maxima in figure 9d). Also presented
for comparison are the corresponding sections at φf = 60◦ and λ= 0.3.

We first note the orientation distribution which for φf = 95◦ is remarkably different
from that of figure 8(a). Even at the relatively large Péclet numbers presented, P ∞

0 is
not a narrow boundary-layer type distribution. Rather, significant densities occur over
a wide interval of azimuthal angles. Furthermore, with increasing Pe, a secondary
peak is emerging. These unique features are related to the occurrence of the above-
mentioned ‘intermediate domain’ of external field directions and magnitudes in which
domain of φf and λ the deterministic rotary motion of spheroids is affected by
the simultaneous coexistence of multiple stable equilibrium orientations. Thus, at
φf = 95◦ a pair of stable nodes exist for λ between 0.710 and 0.907 (cf. figure 5 and
the discussion pertaining thereto).

Figure 10(c) for φf =95◦ shows in the same interval of φ, large gradients of B2 which
are still intensifying with Pe. Owing to the peculiar nature of the corresponding P ∞

0 ,
these gradients appear where significant densities exist (unlike all other cases, when the
B2 gradients only appear at the outer margins of P ∞

0 ). As shown in figure 10(f ),
the combination of these P ∞

0 and B2 results in large values of the product P ∞
0 (∂B2/∂φ)2

throughout a considerable portion of orientation space. Furthermore, these are
significantly growing with Pe, leading to substantially enhanced dispersion.
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Figure 9. Variation of ν with λ at the indicated values of Pe and (a) φf =0◦, (b) 60◦, (c) 84◦,
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5. Concluding remarks
To begin with, we consider the soundness of the assumed steadiness and

homogeneity of the ambient flow. The latter assumption is necessary for the
application of the generalized Taylor dispersion theory. (This scheme is based on
the recursive calculation of statistical moments which is not possible in the present
transport problem unless the carrier-fluid velocity V depends linearly upon R.)
Furthermore, existence of the macroscopic purely physical space description (2.8) and
(2.9) is only guaranteed provided that the eigenvalues of G, the velocity gradient,
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are purely imaginary (which, in turn, assures that passive advection in the ambient
shear field is a slow process relative to orientational relaxation, cf. Frankel & Brenner
1991). We have therefore focused on the simple shear flow (2.17).

In actual bioconvection problems, suspension velocity fields are neither steady nor
homogeneous. The present scheme therefore constitutes a local quasi-homogeneous
and quasi-steady macroscopic description provided that the ambient velocity gradient
is slowly varying on macroscopic length (L) and time (T ) scales which are both large
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relative to the corresponding scales characterizing the (microscopic) relaxation in
orientation space. (Similar scale-disparity arguments are also inherent in asymptotic
schemes leading to diffusion approximations in transport problems based on different
microscopic models, cf. Hillen & Othmer 2000). Experimental observations of
bioconvection (Kessler 1986; Bees & Hill 1997) indicate that L ≈ (1 − 5) mm and
T ≈ 1 min. As mentioned following (2.7), orientational relaxation takes place on the
time scale ≈ d−1

r . During this time, the gyrotactic cells swim a horizontal distance

≈ Ud−1
r |ē × F̂| across the essentially vertical streamlines. We have previously estimated

Pe ≈ 15, λ≈ 0.15 at fully developed bioconvection. Hence, for spherical cells we obtain
|ē × F̂| ≈ 0.2 (see figure 2). For a typical swimming speed U ≈ 100 µms−1 (Pedley et al.
1988) and adopting the value dr ≈ 0.067 s−1 mentioned earlier, we see that both of
the above scale-disparity requirements are reasonably satisfied in bioconvection of
gyrotactic cells (cf. Pedley & Kessler 1990).

The present contribution has been motivated by the evidence indicating the
sensitivity of the results of simulations of fully developed bioconvection (e.g. Ghorai
& Hill 2000) as well as linear stability analyses (cf. Bees & Hill 1998) to the value of
the dispersivity D̄ and by the lack of rigorous calculations of this effective transport
coefficient in suspensions of non-spherical cells at substantial shear rates (Pedley &
Kessler 1990, 1992). Accordingly, we have applied the generalized Taylor dispersion
theory to the calculation of Ū and D̄ which has enabled a systematic study of
the respective effects of external field and shear rates on the transport processes in
sheared suspensions of swimming gyrotactic micro-organisms. Some of the results
(e.g. the non-monotonical variation of dispersion rate with external-field intensity at
strong shear, cf. figures 4 and 7) are counter-intuitive. Particularly remarkable are the
large dispersion rates predicted in the intermediate regime of external field directions
and intensities in suspensions of axisymmetric cells (see figure 9). This seemingly
esoteric result may be relevant to the study of gyrotactic plumes where macroscopic
convection velocities are nearly vertical.

It is worth considering the relation between the present (2.11) or (2.12) and previous
calculations of D̄. The starting point of Pedley & Kessler (1990) is the expression of
D̄ as the limit when t → ∞ of the time integral of the swimming-velocity covariance

D̄ = lim
t→∞

∫ t

0

〈��U(t)�U(t1)� s〉 dt1, (5.1)

in which 〈·〉 denotes an appropriate Lagrangian tracer average. This expression is
based on a linear (in t) asymptotic long-time behaviour of the variance 〈RR〉−〈R〉〈R〉
of the tracer physical-space position (cf. Dill & Brenner 1983; Koch & Brady 1987)
and is therefore only valid in the absence of shear. For all (however small) G �= 0, a
consistent calculation of the rate of change of R −〈R〉 involves the effect of advection
in the ambient shear associated with the instantaneous tracer displacement relative
to the average position. This, in turn, results in a nonlinear long-time variation of the
variance with t (Frankel & Brenner 1991).

To simplify the calculation Pedley & Kessler (1990) postulated a constant direction
correlation time to replace (5.1) by the long-time limit of the swimming velocity
variance which in present notation is

D̄ = τ

∫
S2

P ∞
0 (e)�U(e)�U(e) d2e (5.2a)

= U 2τ

∫
S2

P ∞
0 (e)(ee − ēē) d2e. (5.2b)
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In the absence of shear, Dill & Brenner (1983) demonstrated the equivalence of (5.1)
and ∫

S2

P ∞
0 (e)��U(e)B(e)� s d2e. (5.3)

Comparison of (5.2a) and (5.3) reveals that the former approximation essentially
consists of the (ad hoc) replacement of P ∞

0 B by P ∞
0 �U , the corresponding forcing

term of the B(e)-equation (2.15), multiplied by the direction correlation time τ .
From a kinematic point of view, (5.2a) attempts to express D̄ exclusively in terms
of instantaneous swimming velocities, whereas (cf. Frankel & Brenner 1991) the
rate of dispersion depends on the instantaneous physical-space configuration of the
suspension (effectively represented by B(e) – see the footnote pertaining to (2.15)–
(2.16)) as well. In view of this, the difficulties encountered in estimating or selecting
the appropriate value of τ in a consistent interpretation of empirical data (Pedley &
Kessler 1990; Bees & Hill 1997, 1998) are expected.

Finally, the calculation by Hill & Bees (2002) of the dispersion of spheres makes
use of (5.3). At strong shear, this expression may not be positive definite which is
a necessary attribute for D̄ to qualify as an effective phenomenological coefficient
appearing in the constitutive equation ((2.9) or (1.2)) in a well-posed model problem
(Frankel & Brenner 1991, 1993). Furthermore, the difference between the present
D̄ ((2.11) or (2.12)) and (5.3), i.e. the second term on the right-hand side of (2.11),
constitutes in certain cases the dominant contribution to ν at large Pe (see Appendix).

To illustrate the difference between the present calculation and that of Hill & Bees
(2002), figure 11 compares the variation of D̄ with Pe for spherical cells (B =0) in
the absence of an external field (λ= 0) (for which case exact closed-form results are
obtained in the Appendix) as obtained from (2.11) (solid curves) and (5.3) (dotted
lines), respectively. Figure 11(a) presents the eigenvalues ν1 > ν2 corresponding to
eigenvectors in the plane of shear. We first note that the smaller eigenvalue ν2,
resulting from (5.3), turns negative at Pe � 10, whereas the present ν2 remains non-
negative for all Pe. Another conspicuous feature is that at intermediate values of Pe,
the present ν1 is nearly twice as large as its counterpart calculated from (5.3). The
respective principal azimuthal directions φ1 corresponding to ν1 according to both
(2.11) and (5.3) are presented in figure 11(b). They grow markedly different from each
other with increasing Pe. At large Pe, these directions become π/4 apart.

The experimental observations of Hill & Häder (1997) and Vladimirov et al. (2000)
indicate considerable scatter in swimming speed of cells. Considering the swimming
speed and direction as independent random variables (which assumption is supported
by the data of Hill & Häder 1997), U in (2.10) may be viewed as an appropriate
average of the swimming speed (Pedley & Kessler 1990). Bees et al. (1998) and Bees
& Hill (1998) modified the ad hoc D̄ by introducing the factor 〈U 2〉/〈U〉2 in the
first term of the integrand of (5.2b). It is less straightforward to incorporate this
randomness into a consistent calculation of D̄. The starting-point of such a desirable
extension of generalized Taylor dispersion theory is the replacement of (2.1)–(2.3)
by an appropriate Fokker–Planck equation governing evolution of the conditional
probability density function in six-dimensional phase-space including the swimming
speed as an independent random variable. The requisite extension of the long-time
model problem (2.8)–(2.9) may be obtained by assuming a sufficiently rapid relaxation
of the distribution of swimming speeds (cf. Chandrasekhar 1943; Brenner & Edwards
1993).
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Figure 11. Comparison of the variation with Pe of (a) ν and (b) û for spherical cells in the
absence of an external field (λ=0) according to , (2.11); · · · , (5.3).

In conclusion, it seems worth noting that the present analysis of the transport
of gyrotactic cells subject to gravitational orienting torque may be extended to
other types of swimming micro-organisms. Indeed, the present results are applicable
whenever the stochastic elements of the rotary motion may effectively be modelled
as Brownian rotations and the orienting torque results from the action of a uniform
external field on a permanent embedded dipole (e.g. a permanent magnetic dipole,
cf. Brenner & Condiff 1974; Rosensweig 1985). In these cases, it is only the physical
significance of λ in (2.4) which needs to be reinterpreted. Furthermore, the present
generalized Taylor dispersion scheme may readily be adapted (involving relatively
minor modifications of (2.10), (2.11), (2.13) and (2.15)) provided that the external
‘taxis’ may be modelled by an orientation-specific torque.
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Appendix. Calculation of b(e) for spheres
A.1. Weak external field (λ � 1)

In the absence of an external field, λ= 0, spherical particles rotate at the undisturbed
fluid angular velocity (θ̇ =0 and φ̇ =1/2 from (2.22a) and (2.22b)), their orientations
are uniformly distributed, P ∞

0 = 1/4π, and hence ē = 0. From (2.20), we thus
obtain

1
2
Pe

∂bi

∂φ
− 1

sin θ

∂

∂θ

(
∂bi

∂θ
sin θ

)
− 1

sin2 θ

∂2bi

∂φ2
− Pe b1δ2i =

ei

4π
(i = 1, 2, 3), (A 1)

which are to be integrated in conjunction with the normalization conditions (2.20).
Excluding singular solutions, b1 and b2 are recursively calculated to yield

b1 =
1

π(Pe2 + 16)

(
2 cos φ + 1

2
Pe sin φ

)
sin θ (A 2)

and

b2 =
1

π(Pe2 + 16)2

[
− 1

2
Pe(3Pe2 − 16) cos φ + 2(5Pe2 + 16) sin φ

]
sin θ. (A 3)

Finally, for b3, we readily obtain

b3 =
1

8π
cos θ. (A 4)

From these, the eigenvalue ν and the corresponding principal direction û, (3.2) and
(3.3), are obtained. Following the asymptotic calculation of P ∞

0 in the present limit
(λ � 1, Pe ∼ O(1)) by Brenner & Weissman (1972), we have obtained an O(λ)
correction to b. This correction, however, does not contribute to D̄, hence the error
estimates in (3.2) and (3.3).

In the discussion following (3.2) and (3.3), the variation of û with Pe is mentioned
as an indication of a change in the mechanism of dispersion. Owing to the symmetry
of D̄ about the plane of shear, the principal direction û (3.3) is determined by
x = (D22 − D11)/D12. To clarify the variation with Pe of this parameter it is useful to
represent b2 by the sum

b2 = b
(1)
2 + b

(2)
2 , (A 5)

in which (cf. (2.20a))

Lb
(1)
2 = P ∞

0 (e2 − ē2), (A 6)

Lb
(2)
2 = Pe b1 (A 7)

and both b
(1)
2 and b

(2)
2 satisfy the normalization condition (2.20b). When calculating Dij

exclusively on the basis of b
(1)
2 , we obtain x ≡ 0 which, in turn, yields û(1) coinciding

with the principal direction of ambient extension at all Pe. When the contribution of
b

(2)
2 is incorporated into the calculation of D̄, we obtain x = Pe which results in the

rotation of û towards the direction of the ambient-fluid velocity. The latter rotation
of û is thus a manifestation of the emerging prominence (with increasing Pe) of the
contribution to dispersion of the coupling (through b · G) of b1 and b2.
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Figure 12. Definition of the ‘natural’ (α, β) coordinate system.

A.2. Weak Brownian rotations (Pe � 1, λ < 1/2)

As mentioned at the beginning of § 3, when λ < 1/2, the rotary motion of dipolar
spheres is periodic along a family of circular orbits on S2. Similarly to Hinch & Leal
(1972) we make use of this family as a basis for the system of ‘natural’ coordinates
α (the orbit parameter), the polar angle of the axis about which the particle dipole
rotates and β , the phase angle measured along the specific orbit (β =0 corresponding
to the orbit point closest to the polar axis in the direction of undisturbed fluid
vorticity, see figure 12). Parameterizing e in terms of (α, β), Hinch & Leal (1972)
obtained

P ∞
0 ∼ 2λA(λ)[

cos α + (4λ2 − sin2 α)1/2 cos β
]2

[2 + 4λ2 − 3 sin2 α]
+ O(Pe−1), (A 8)

with the normalization factor A(λ)

A(λ) = (1 − 4λ2)(2 + 4λ2)1/2

[
2π ln

(2 + 4λ2)1/2 + 2λ

(2 + 4λ2)1/2 − 2λ

]−1

. (A 9)

The requisite Cartesian components of ē are readily obtained

ē1 ∼ |ē| sin φf +O(Pe−1), ē2 ∼ −|ē| cosφf + O(Pe−1), (A 10)
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wherein

|ē| = 1

2λ

[
−1 +

4πA

2[3(2 + 4λ2)]1/2
ln

(2 + 4λ2)1/2 + 2(3)1/2λ

(2 + 4λ2)1/2 − 2(3)1/2λ

]
(A 11)

(Hinch & Leal 1972).
Substituting the expansions

b1 ∼ b
(0)
1 + O(Pe−1), b2 ∼ Pe b

(0)
2 +O(1), b3 ∼ b

(0)
3 + O(Pe−1), (A 12)

into (2.15)–(2.16) we obtain the leading-order equations

∇e ·
(
ėb(0)

i

)
= 0 (i = 1, 2, 3), (A 13)

together with the corresponding normalization conditions∫
S2

b
(0)
i d2e = 0 (i =1, 2, 3). (A 14)

Writing the former in the natural coordinates we obtain

∂

∂β

{[
cos α + (4λ2 − sin2 α)1/2 cos β

]2

2λ
b

(0)
i

}
=0 (i = 1, 2, 3), (A 15)

which, after integration yield

b
(0)
i =

2λgi(α)[
cos α + (4λ2 − sin2 α)1/2 cos β

]2
(i = 1, 2, 3), (A 16)

wherein gi(α) are as yet unknown functions of α.
Following Hinch & Leal (1972), we integrate (2.15) over a domain S of S2 bounded

by the single orbit c. Applying the divergence theorem and making use of the tangency
of ė to c we thus obtain ∮

c

∂b
(0)
1

∂n
dl = −

∫
S

P ∞
0 (e1 − ē1) dA, (A 17)

∮
c

∂b
(0)
2

∂n
dl = −2

∫
S

b
(0)
1 dA, (A 18)

∮
c

∂b
(0)
3

∂n
dl = −

∫
S

P ∞
0 e3 dA, (A 19)

in which ∂/∂n denotes differentiation along an outwardly directed normal to c in a
plane tangent to S2, dl is an element of arc along c and dA an areal element on
S2. Expressing (A 17)–(A 19) in terms of (α, β) and substituting (A 16), we obtain the
ordinary first-order equations

(2 + 4λ2 − 3 sin2 α)
dgi

dα
− 6 sin α cos αgi =

(1 − 4λ2)5/2

π(4λ2 − sin2 α)
Fi(α) (i = 1, 2, 3), (A 20)

wherein the forcing terms are

F1(α) =
πA

(2 + 4λ2)1/2

{
2

1 − 4λ2
tanh−1

(
(1 − 4λ2)1/2

(2 + 4λ2)1/2
tan α

)(
ē1 +

sin φf

2λ

)

− sin φf

2(3)1/2λ
ln

(2 + 4λ2)1/2 + 31/2 sin α

(2 + 4λ2)1/2 − 31/2 sin α

}
, (A 21a)
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F2(α) = − 4π

(1 − 4λ2)1/2

∫ α

−sin−1 2λ

g1(α1) dα1 (A 21b)

and

F3(α) = − πA

2λ[3(1 − 4λ2)]1/2
ln

[
31/2 − 1

][
31/2 cos α + (1 − 4λ2)1/2

][
31/2 + 1

][
31/2 cos α − (1 − 4λ2)1/2

] . (A 21c)

The functions gi(α) (i =1, 2, 3) are thus

gi(α) =
1

2 + 4λ2 − 3 sin2 α

{
(1 − 4λ2)5/2

π

∫ α

−sin−1 2λ

Fi(α1)

4λ2 − sin2 α1

dα1 + Ki

}
(i = 1, 2, 3).

(A 21d)
The integration constants obtained from the normalization conditions (A 14) are

Ki = − 2πA

(1 − 4λ2)1/2

∫ sin−1 2λ

−sin−1 2λ

f (Fi(α)) dα

2 + 4λ2 − 3 sin2 α
(i = 1, 2, 3) (A 21e)

wherein

f (Fi(α)) =
(1 − 4λ2)5/2

π

∫ α

−sin−1 2λ

Fi(α1)

4λ2 − sin2 α1

dα1. (A 21f)

Substituting the expansions (A 12) into (2.11), we obtain the leading-order
approximations of the non-zero scalar components of D̄

D̄11 ∼
∫

S2

b
(0)
1 e1 d2e +O(Pe−1), D̄12 ∼ 1

2
Pe

∫
S2

[
b

(0)
2 e1 +

b
(0) 2

1

P ∞
0

]
d2e + O(1),

D̄22 ∼ Pe2

∫
S2

b
(0)
1 b

(0)
2

P ∞
0

d2e + O(Pe), D̄33 ∼
∫

S2

b
(0)
3 e3 d2e + O(Pe−1).

Making use of the above expressions of b
(0)
i (A 16) and gi (A 21d) we effect the requisite

quadratures in the ‘natural’ coordinates to obtain for the leading-order approximation

ν∞(λ) =
2π sin2 φf

A(λ)(1 − 4λ2)1/2

∫ sin−1 2λ

−sin−1 2λ

[ f (F1) f (F2) +K2 f (F1) + K1 f (F2)

+ K1K2]
dα

2 + 4λ2 − 3 sin2 α
+O(Pe−1) (A 22)

in (3.4a) and û (3.4b).
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